Course Objectives
This course is designed to teach you how to:
- Define machine learning (ML) and deep learning Identify the concepts in a deep learning ecosystem Use Amazon SageMaker and the MXNet programming framework for deep learning workloads Fit AWS solutions for deep learning deployments
Agenda
- A brief history of AI, ML, and DL
- The business importance of ML
- Common challenges in ML
- Different types of ML problems and tasks
- AI on AWS
- Introduction to DL
- The DL concepts
- A summary of how to train DL models on AWS
- Introduction to Amazon SageMaker
- Hands-on lab: Spinning up an Amazon SageMaker notebook instance and running a multi-layer perceptron neural network model
- The motivation for and benefits of using MXNet and Gluon
- Important terms and APIs used in MXNet
- Convolutional neural networks (CNN) architecture
- Hands-on lab: Training a CNN on a CIFAR-10 dataset
- AWS services for deploying DL models (AWS Lambda, AWS IoT Greengrass, Amazon ECS, AWS Elastic Beanstalk)
- Introduction to AWS AI services that are based on DL (Amazon Polly, Amazon Lex, Amazon Rekognition)
- Hands-on lab: Deploying a trained model for prediction on AWS Lambda
FREE
Interested in course?
Course Type: Instructor Led