course

Home / Courses / Introduction to R Programming

Course Objectives

This intensive training course helps students learn the practical aspects of the R programming language. The course is supplemented by many hands-on labs which allow attendees to immediately apply their theoretical knowledge in practice.

Agenda

  • • What is R?
  • • Positioning of R in the Data Science Space
  • • The Legal Aspects
  • • Microsoft R Open
  • • R Integrated Development Environments
  • • Running R
  • • Running RStudio
  • • Getting Help
  • • General Notes on R Commands and Statements
  • • Assignment Operators
  • • R Core Data Structures
  • • Assignment Example
  • • R Objects and Workspace
  • • Printing Objects
  • • Arithmetic Operators
  • • Logical Operators
  • • System Date and Time
  • • Operations
  • • User-defined Functions
  • • Control Statements
  • • Conditional Execution
  • • Repetitive Execution
  • • Repetitive execution
  • • Built-in Functions
  • • Summary

  • • What is Functional Programming (FP)?
  • • Terminology: Higher-Order Functions
  • • A Short List of Languages that Support FP
  • • Functional Programming in R
  • • Vector and Matrix Arithmetic
  • • Vector Arithmetic Example
  • • More Examples of FP in R
  • • Summary

  • • Getting and Setting the Working Directory
  • • Getting the List of Files in a Directory
  • • The R Home Directory
  • • Executing External R commands
  • • Loading External Scripts in RStudio
  • • Listing Objects in Workspace
  • • Removing Objects in Workspace
  • • Saving Your Workspace in R
  • • Saving Your Workspace in RStudio
  • • Saving Your Workspace in R GUI
  • • Loading Your Workspace
  • • Diverting Output to a File
  • • Batch (Unattended) Processing
  • • Controlling Global Options
  • • Summary

  • • The R Data Types
  • • System Date and Time
  • • Formatting Date and Time
  • • Using the mode() Function
  • • R Data Structures
  • • What is the Type of My Data Structure?
  • • Creating Vectors
  • • Logical Vectors
  • • Character Vectors
  • • Factorization
  • • Multi-Mode Vectors
  • • The Length of the Vector
  • • Getting Vector Elements
  • • Lists
  • • A List with Element Names
  • • Extracting List Elements
  • • Adding to a List
  • • Matrix Data Structure
  • • Creating Matrices
  • • Creating Matrices with cbind() and rbind()
  • • Working with Data Frames
  • • Matrices vs Data Frames
  • • A Data Frame Sample
  • • Creating a Data Frame
  • • Accessing Data Cells
  • • Getting Info About a Data Frame
  • • Selecting Columns in Data Frames
  • • Selecting Rows in Data Frames
  • • Getting a Subset of a Data Frame
  • • Sorting (ordering) Data in Data Frames by Attribute(s)
  • • Editing Data Frames
  • • The str() Function
  • • Type Conversion (Coercion)
  • • The summary() Function
  • • Checking an Object’s Type
  • • Summary

  • • The Base R Packages
  • • Loading Packages
  • • What is the Difference between Package and Library?
  • • Extending R
  • • The CRAN Web Site
  • • Extending R in R GUI
  • • Extending R in RStudio
  • • Installing and Removing Packages from Command-Line
  • • Summary

  • • Reading Data from a File into a Vector
  • • Example of Reading Data from a File into A Vector
  • • Writing Data to a File
  • • Example of Writing Data to a File
  • • Reading Data into A Data Frame
  • • Writing CSV Files
  • • Importing Data into R
  • • Exporting Data from R
  • • Summary

  • • Statistical Computing Features
  • • Descriptive Statistics
  • • Basic Statistical Functions
  • • Examples of Using Basic Statistical Functions
  • • Non-uniformity of a Probability Distribution
  • • Writing Your Own skew and kurtosis Functions
  • • Generating Normally Distributed Random Numbers
  • • Generating Uniformly Distributed Random Numbers
  • • Using the summary() Function
  • • Math Functions Used in Data Analysis
  • • Examples of Using Math Functions
  • • Correlations
  • • Correlation Example
  • • Testing Correlation Coefficient for Significance
  • • The cor.test() Function
  • • The cor.test() Example
  • • Regression Analysis
  • • Types of Regression
  • • Simple Linear Regression Model
  • • Least-Squares Method (LSM)
  • • LSM Assumptions
  • • Fitting Linear Regression Models in R
  • • Example of Using lm()
  • • Confidence Intervals for Model Parameters
  • • Example of Using lm() with a Data Frame
  • • Regression Models in Excel
  • • Multiple Regression Analysis
  • • Summary

  • • Applying Functions to Matrices and Data Frames
  • • The apply() Function
  • • Using apply()
  • • Using apply() with a User-Defined Function
  • • apply() Variants
  • • Using tapply()
  • • Adding a Column to a Data Frame
  • • Dropping A Column in a Data Frame
  • • The attach() and detach() Functions
  • • Sampling
  • • Using sample() for Generating Labels
  • • Set Operations
  • • Example of Using Set Operations
  • • The dplyr Package
  • • Object Masking (Shadowing) Considerations
  • • Getting More Information on dplyr in RStudio
  • • The search() or searchpaths() Functions
  • • Handling Large Data Sets in R with the data.table Package
  • • The fread() and fwrite() functions from the data.table Package
  • • Using the Data Table Structure
  • • Summary

  • • Data Visualization
  • • Data Visualization in R
  • • The ggplot2 Data Visualization Package
  • • Creating Bar Plots in R
  • • Creating Horizontal Bar Plots
  • • Using barplot() with Matrices
  • • Using barplot() with Matrices Example
  • • Customizing Plots
  • • Histograms in R
  • • Building Histograms with hist()
  • • Example of using hist()
  • • Pie Charts in R
  • • Examples of using pie()
  • • Generic X-Y Plotting
  • • Examples of the plot() function
  • • Dot Plots in R
  • • Saving Your Work
  • • Supported Export Options
  • • Plots in RStudio
  • • Saving a Plot as an Image
  • • Summary

  • • Object Memory Allocation Considerations
  • • Garbage Collection
  • • Finding Out About Loaded Packages
  • • Using the conflicts() Function
  • • Getting Information About the Object Source Package with the pryr Package
  • • Using the where() Function from the pryr Package
  • • Timing Your Code
  • • Timing Your Code with system.time()
  • • Timing Your Code with System.time()
  • • Sleeping a Program
  • • Handling Large Data Sets in R with the data.table Package
  • • Passing System-Level Parameters to R
  • • Summary

  • Lab 1 – Getting Started with R
  • Lab 2 – Learning the R Type System and Structures
  • Lab 3 – Read and Write Operations in R
  • Lab 4 – Data Import and Export in R
  • Lab 5 – k-Nearest Neighbors Algorithm
  • Lab 6 – Creating Your Own Statistical Functions
  • Lab 7 – Simple Linear Regression
  • Lab 8 – Monte-Carlo Simulation (Method)
  • Lab 9 – Data Processing with R
  • Lab 10 – Using R Graphics Package
  • Lab 11 – Using R Efficiently
Tags
Technical Core Type: Core 4 Vendor: Web Age Solutions, Inc. Product Line: Other LoD Tier: 1
FREE

Interested in course?


Course Type: Instructor Led